If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81k^2-32=0
a = 81; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·81·(-32)
Δ = 10368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10368}=\sqrt{5184*2}=\sqrt{5184}*\sqrt{2}=72\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{2}}{2*81}=\frac{0-72\sqrt{2}}{162} =-\frac{72\sqrt{2}}{162} =-\frac{4\sqrt{2}}{9} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{2}}{2*81}=\frac{0+72\sqrt{2}}{162} =\frac{72\sqrt{2}}{162} =\frac{4\sqrt{2}}{9} $
| x8+15=-8 | | 6b+4=2(2b+1 | | 4x12=36 | | 12-(-4x-6)=5x | | 96/1w-11=12 | | 18=2(3x+6) | | 96/w-11=12 | | -2+4x=6+10 | | 5x+3(x–5)=6x+2x–15 | | 5x-3x=(x+7)+3x | | 0=-0.75x+42 | | (16+2x)(12+2x)+192=396 | | 2x2-10x+5=0 | | -7w+5(w-7)=-21 | | 3x^3+4x^2-7x-2=0 | | 90x+40=410 | | 4y^2=-y+3 | | 9(u-7)=90 | | 4z+8=9z-14 | | 3(q-8)=27 | | 7x34=209 | | 1x/9=14 | | 190=-16t^2 | | 12=6x-4=5=2(3x-1) | | 16-3u=5u | | -10+x+4–5=7x—5 | | -10m=12m+4 | | 5x=4x2+6=0 | | 9+8x=26+x | | (2)(x-1)/9-6+2x/3=4 | | x=4.75-1.5*1+1/2 | | (2)(x-1)÷9-6+2x÷3=4 |